3.640 \(\int \frac{(d f+e f x)^2}{a+b (d+e x)^2+c (d+e x)^4} \, dx\)

Optimal. Leaf size=170 \[ \frac{f^2 \sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} e \sqrt{b^2-4 a c}}-\frac{f^2 \sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} e \sqrt{b^2-4 a c}} \]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - S
qrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*e)) + (Sqrt[b + Sqrt[b^2
- 4*a*c]]*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(
Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*e)

_______________________________________________________________________________________

Rubi [A]  time = 0.447407, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091 \[ \frac{f^2 \sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} \sqrt{c} e \sqrt{b^2-4 a c}}-\frac{f^2 \sqrt{b-\sqrt{b^2-4 a c}} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} \sqrt{c} e \sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]  Int[(d*f + e*f*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4),x]

[Out]

-((Sqrt[b - Sqrt[b^2 - 4*a*c]]*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - S
qrt[b^2 - 4*a*c]]])/(Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*e)) + (Sqrt[b + Sqrt[b^2
- 4*a*c]]*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(
Sqrt[2]*Sqrt[c]*Sqrt[b^2 - 4*a*c]*e)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 42.6939, size = 158, normalized size = 0.93 \[ - \frac{\sqrt{2} f^{2} \sqrt{b - \sqrt{- 4 a c + b^{2}}} \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \left (d + e x\right )}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 \sqrt{c} e \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt{2} f^{2} \sqrt{b + \sqrt{- 4 a c + b^{2}}} \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} \left (d + e x\right )}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 \sqrt{c} e \sqrt{- 4 a c + b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*f*x+d*f)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

-sqrt(2)*f**2*sqrt(b - sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*(d + e*x)/sqrt(
b - sqrt(-4*a*c + b**2)))/(2*sqrt(c)*e*sqrt(-4*a*c + b**2)) + sqrt(2)*f**2*sqrt(
b + sqrt(-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*(d + e*x)/sqrt(b + sqrt(-4*a*c + b
**2)))/(2*sqrt(c)*e*sqrt(-4*a*c + b**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.166787, size = 178, normalized size = 1.05 \[ \frac{f^2 \left (\left (\sqrt{b^2-4 a c}-b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )+\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{\sqrt{b^2-4 a c}+b} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )\right )}{\sqrt{2} \sqrt{c} e \sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}} \]

Antiderivative was successfully verified.

[In]  Integrate[(d*f + e*f*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4),x]

[Out]

(f^2*((-b + Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[
b^2 - 4*a*c]]] + Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[b + Sqrt[b^2 - 4*a*c]]*ArcTan[
(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]]))/(Sqrt[2]*Sqrt[c]*Sqrt
[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e)

_______________________________________________________________________________________

Maple [C]  time = 0.003, size = 143, normalized size = 0.8 \[{\frac{{f}^{2}}{2\,e}\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ({{\it \_R}}^{2}{e}^{2}+2\,{\it \_R}\,de+{d}^{2} \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,{\it \_R}\,c{d}^{2}e+2\,c{d}^{3}+be{\it \_R}+bd}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*f*x+d*f)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4),x)

[Out]

1/2*f^2/e*sum((_R^2*e^2+2*_R*d*e+d^2)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*d^2*e+
2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*
e^2)*_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e f x + d f\right )}^{2}}{{\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a),x, algorithm="maxima")

[Out]

integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.324789, size = 1079, normalized size = 6.35 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a),x, algorithm="fricas")

[Out]

1/2*sqrt(1/2)*sqrt(-(b*f^4 + (b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4
))*e^2)/((b^2*c - 4*a*c^2)*e^2))*log(e*f^6*x + d*f^6 + sqrt(1/2)*(b^2*c - 4*a*c^
2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^3*sqrt(-(b*f^4 + (b^2*c - 4*a*c^2)*sqrt
(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^2)/((b^2*c - 4*a*c^2)*e^2))) - 1/2*sqrt(1/2)*s
qrt(-(b*f^4 + (b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^2)/((b^2*c
 - 4*a*c^2)*e^2))*log(e*f^6*x + d*f^6 - sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt(f^8/((b
^2*c^2 - 4*a*c^3)*e^4))*e^3*sqrt(-(b*f^4 + (b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2
- 4*a*c^3)*e^4))*e^2)/((b^2*c - 4*a*c^2)*e^2))) - 1/2*sqrt(1/2)*sqrt(-(b*f^4 - (
b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^2)/((b^2*c - 4*a*c^2)*e^2
))*log(e*f^6*x + d*f^6 + sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^
3)*e^4))*e^3*sqrt(-(b*f^4 - (b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4)
)*e^2)/((b^2*c - 4*a*c^2)*e^2))) + 1/2*sqrt(1/2)*sqrt(-(b*f^4 - (b^2*c - 4*a*c^2
)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^2)/((b^2*c - 4*a*c^2)*e^2))*log(e*f^6*x
+ d*f^6 - sqrt(1/2)*(b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^3*sq
rt(-(b*f^4 - (b^2*c - 4*a*c^2)*sqrt(f^8/((b^2*c^2 - 4*a*c^3)*e^4))*e^2)/((b^2*c
- 4*a*c^2)*e^2)))

_______________________________________________________________________________________

Sympy [A]  time = 6.98454, size = 124, normalized size = 0.73 \[ \operatorname{RootSum}{\left (t^{4} \left (256 a^{2} c^{3} e^{4} - 128 a b^{2} c^{2} e^{4} + 16 b^{4} c e^{4}\right ) + t^{2} \left (- 16 a b c e^{2} f^{4} + 4 b^{3} e^{2} f^{4}\right ) + a f^{8}, \left ( t \mapsto t \log{\left (x + \frac{64 t^{3} a c^{2} e^{3} - 16 t^{3} b^{2} c e^{3} - 2 t b e f^{4} + d f^{6}}{e f^{6}} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*f*x+d*f)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

RootSum(_t**4*(256*a**2*c**3*e**4 - 128*a*b**2*c**2*e**4 + 16*b**4*c*e**4) + _t*
*2*(-16*a*b*c*e**2*f**4 + 4*b**3*e**2*f**4) + a*f**8, Lambda(_t, _t*log(x + (64*
_t**3*a*c**2*e**3 - 16*_t**3*b**2*c*e**3 - 2*_t*b*e*f**4 + d*f**6)/(e*f**6))))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e f x + d f\right )}^{2}}{{\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a),x, algorithm="giac")

[Out]

integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a), x)